Synthesis and Properties of 3-Substituted 8H-3-Azaheptalen-8-ones

Tomoo NAKAZAWA, * Mariko ISHIHARA, Masakazu YAMAGUCHI, † Yoshikazu SUGIHARA, † and Ichiro MURATA †

Department of Chemistry, Medical University of Yamanashi, Nakakoma, Tamaho, Yamanashi 409-38

Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560

3-Substituted 8H-3-azaheptalen-8-ones were synthsized in good yields by photoirradiation of corresponding 7-substituted 7-aza-norbornadienes fused with tropone in ethanol with a 450-W Hg lamp through pyrex filter.

We have been interested in heteropines condensed with a non-benzenoid aromatic system. Recently we communicated the first synthesis of the oxepine having such fused conjugated system, 8H-3-oxaheptalen-8-one (1). For its protonated form 2, it was observed that 3-oxoniaheptalen-8-ol forms, 2' and 2'', exhibiting intramolecular electron transfer, contribute to 2 to some extent. Extensive studies on 1H-azepines have shown that they exist in boat-shaped conformations 2a and behave chemically as cyclic olefins. Here we now report the synthesis of azepines fused with seven-membered aromatics, 3-substituted 8H-3-azaheptalen-8-ones 4.

1-Substituted 1H-azepines have been synthesized by irradiation of 7-azanor-bornadienes followed by thermal rearrangement of labile 3-azaquadricyclanes formed intermediately. We have applied this building sequence to the synthesis of $\underline{4}$. The starting materials for this route, 7-substituted 7-azanorbornadienes $\underline{3}$ fused with tropone, were prepared by the cycloaddition reactions of 4,5-dehydrotropone with the corresponding pyrrols. Treatment of 1-amino-1H-cycloheptatriazol-6-one with lead tetraacetate in dichloromethane in the presence of the pyrrol gave the addition products $\underline{3}$ ($\underline{3a}$; $\underline{33}$ %, $\underline{3b}$; $\underline{26}$ %, $\underline{3c}$; $\underline{19}$ %).

Irradiation of $\underline{3}$ with a 450-W Hg lamp in ethanol (1-2 mmol/L) through pyrex filter followed by careful workup under nitrogen gave 3-substituted 8H-3-aza-heptalen-8-ones $\underline{4}$ ($\underline{4a}$; 60 - 80%, $\underline{4b}$; 65%, $\underline{4c}$; 52%).

The 13 C NMR as well as the 1 H NMR spectra of 4 confirm their structures. $^{4)}$ The vicinal proton coupling constants of 4 [1], 2], 4 , 5 8.4 Hz for 4 a; 8.5 Hz for 4 b; 7.8 Hz for 4 c (in CDCl 3), 8.6 Hz for 4 b (in CD 3 CN) and 1 6, 7 9, 10 12.8 Hz for

92 Chemistry Letters, 1990

 $\frac{4b}{azepine}$ (in CD₃CN)] are comparable to the corresponding coupling constants of 1H-azepine (7.97 Hz), ^{5a)} cycloheptatriene (8.58 Hz), ^{5b)} and a 4,5-dialkyltropone <u>6</u> (12.0 Hz), ⁶⁾ respectively. These data reveal that the azepine rings of $\frac{4a}{a}$, $\frac{4b}{a}$, and $\frac{4c}{a}$ exist in boat-shaped conformations whereas the tropone moieties remain almost planar geometry.

Protonation of $\underline{4}$ with CF₃COOH afforded 3-substituted 8-hydroxy-8H-3-azaheptalenium ions $\underline{5}$ [e. g. $\underline{5a}$: 1 H NMR (60 MHz, CF₃COOH) $^{\delta}$ 1.40 (t, J=7.0 Hz, CH₃), 4.47 (q, J=7.0 Hz, CH₂), 5.60 Hz (d, J=9.3 Hz, H-1,5), 6.45 (d, J=9.3 Hz, H-2,4), 7.72 (s-like, H-6,7,9,10)]. Downfield chemical shifts ($\Delta\delta$ =0.92 ppm for $\underline{5a}$ and $\Delta\delta$ =1.18 ppm for $\underline{5b}$) of the troponoid protons in the 1 H NMR spectra of $\underline{5}$ compared with those of $\underline{4}$ are moderately smaller than the corresponding values (1.29 - 1.47 ppm) observed for the dialkyltropone $\underline{6}$ and its protonated species but somewhat larger than those (0.67 - 0.80 ppm) observed for $\underline{1}$ and $\underline{2}$. 1 These data suggest that 3-azoniaheptalen-8-ol forms, $\underline{5}$ ' and $\underline{5}$ ", do not contribute to $\underline{5}$ so significantly as $\underline{2}$ ' and $\underline{2}$ " do to $\underline{2}$ owing to the electron-withdrawing N-substituents

 $\underline{4a}$, $\underline{4b}$, and $\underline{4c}$ exhibit UV spectra [e. g. $\underline{4a}$: (CH $_3$ OH) λ_{max} nm (log ϵ) 237 (4.31), 274 sh (3.96), 354 (3.57)] similar to that of $\underline{1}$, since their molecular geometries are analogous to that of $\underline{1}$.

$$0 \longrightarrow \begin{array}{c} hv \\ \hline \\ 0 \longrightarrow \\ 0$$

References

- 1) T. Nakazawa, M. Ishihara, M. Jinguji, M. Yamaguchi, H. Yamochi, and I. Murata, Chem. Lett., <u>1988</u>, 1647.
- 2) a) J. C. Paul, S. M. Johnson, L. A. Paquette, J. H. Barret, and R. J. Haluska, J. Am. Chem. Soc., 90, 5023 (1968); H. J. Lindner and B. von Gross, Chem. Ber., 105, 434 (1972); b) For a review, see: L. A. Paquette, "Nonbenzenoid Aromatics," ed by J. P. Snyder, Academic Press, New York, N. Y. (1969), Vol. 1, p. 249.
- 3) H. Prinzbach, G. Kaupp, R. Fuchs, M. Joyeux, R. Kitzing, and J. Markert, Chem. Ber., 106, 3824 (1973).
- 4) $\underline{4a}$: 13 C NMR (100 MHz, CDCl₃) & 14.44 (CH₃), 63.07 (CH₂), 121.36 (C-1,5), 136.73 (C-2,4), 139.39, 140.21 (C-6,10,7,9), 142.67 (C-5a,10a), 152.58 (CO of ester), 186.08 (C-8); 1 H NMR (60 MHz, CDCl₃) & 1.32 (t, J=7.0 Hz, CH₃), 4.28 (q, J=7.0 Hz, CH₂), 5.54 (d, J=8.4 Hz, H-1,5), 6.25 (d, J=8.4 Hz, H-2,4), 6.80 (s-like, troponoid H).
- 5) a) E. Vogel, H.-J. Altenbach, J.-M. Drossard, H. Schmickler, and H. Stegelmeier, Angew. Chem., 92, 1053 (1980); b) J. B. Lambert, L. J. Durham, P. Lepoutere, and J. D. Roberts, J. Am. Chem. Soc., 87, 3896 (1965).
- 6) T. Nakazawa, Y. Niimoto, and I. Murata, Tetrahedron Lett., 1978, 569.

 (Received October 11, 1989)